Part Number Hot Search : 
G936T73T HDSP5553 2SD17 DS9096P QG144I GT60J322 M450V AD7871JP
Product Description
Full Text Search
 

To Download X84256 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Preliminary 256K
X84256 Port Saver EEPROM
DESCRIPTION
MPSTM EEPROM
FEATURES * Up to 10MHz data transfer rate * 25ns Read Access Time * Direct Interface to Microprocessors and Microcontrollers --Eliminates I/O port requirements --No interface glue logic required --Eliminates need for parallel to serial converters * Low Power CMOS --2.5V-5.5V and 5V 10% Versions --Standby Current Less than 1A --Active Current Less than 3mA * Byte or Page Write Capable --64-Byte Page Write Mode * Typical Nonvolatile Write Cycle Time: 2ms * High Reliability --1,000,000 Endurance Cycles --Guaranteed Data Retention: 100 Years * Small Packages Options --8, 16-Lead SOIC Packages --14-Lead TSSOP Packages --8-Lead XBGA Packages
The Port Saver memories need no serial ports or special hardware and connect to the processor memory bus. Replacing bytewide data memory, the Port Saver uses bytewide memory control functions, takes a fraction of the board space and consumes much less power. Replacing serial memories, the Port Saver provides all the serial benefits, such as low cost, low power, low voltage, and small package size while releasing I/Os for more important uses. The Port Saver memory outputs data within 25ns of an active read signal. This is less than the read access time of most hosts and provides "no-wait-state" operation. This prevents bottlenecks on the bus. With rates to 10 MHz, the Port Saver supplies data faster than required by most host read cycle specifications. This eliminates the need for software NOPs. The Port Saver memories communicate over one line of the data bus using a sequence of standard bus read and write operations. This "bit serial" interface allows the Port Saver to work well in 8-bit, 16 bit, 32-bit, and 64-bit systems. A Write Protect (WP) pin prevents inadvertent writes to the memory. Xicor EEPROMs are designed and tested for applications requiring extended endurance. Inherent data retention is greater than 100 years.
BLOCK DIAGRAM
System Connection P C DSP ASIC RISC
Ports Saved
P0/CS P1/CLK P2/DI P3/DO A15 WP
Internal Block Diagram MPS
H.V. GENERATION TIMING & CONTROL
A0 D7 D0 OE WE
CE I/O OE WE COMMAND DECODE AND CONTROL LOGIC EEPROM ARRAY X DEC 32K x 8
Y DECODE DATA REGISTER
(c)Xicor, Inc. 1998 Patents Pending 4005 1 8/24/99 WW
1
Characteristics subject to change without notice
X84256
PIN CONFIGURATIONS Drawings are to the same scale, actual package sizes are shown in inches:
8-LEAD SOIC
Preliminary
PIN NAMES
I/O CE OE WE WP VCC VSS NC
V CC NC NC NC NC OE WE
Data Input/Output Chip Enable Input Output Enable Input Write Enable Input Write Protect Input Supply Voltage Ground No Connect
CE I/O WP VSS
1 2 3 4
8 7 6 5
VCC NC OE WE
14-LEAD TSSOP
CE I/O NC NC NC WP VSS
1 2 3 4 5 6 7
14 13 12 11 10 9 8
PIN DESCRIPTIONS Chip Enable (CE) The Chip Enable input must be LOW to enable all read/ write operations. When CE is HIGH, the chip is deselected, the I/O pin is in the high impedance state, and unless a nonvolatile write operation is underway, the device is in the standby power mode. Output Enable (OE) The Output Enable input must be LOW to enable the output buffer and to read data from the device on the I/O line. Write Enable (WE) The Write Enable input must be LOW to write either data or command sequences to the device. Data In/Data Out (I/O) Data and command sequences are serially written to or serially read from the device through the I/O pin. Write Protect (WP) When the Write Protect input is LOW, nonvolatile writes to the device are disabled. When WP is HIGH, all functions, including nonvolatile writes, operate normally. If a nonvolatile write cycle is in progress, WP going LOW will have no effect on the cycle already underway, but will inhibit any additional nonvolatile write cycles. DEVICE OPERATION The X84256 serial EEPROM is designed to interface directly with most microprocessor buses. Standard CE, OE, and WE signals control the read and write operations, and a single l/O line is used to send and receive data and commands serially.
8-LEAD XBGA
VCC NC WE OE
1 2 3 4
X84256
8 7 6 5
I/O CE VSS WP
16-LEAD SOIC
CE I/O NC NC NC NC WP VSS
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10 9
V CC NC NC NC NC NC OE WE
2
X84256
Data Timing Data input on the l/O line is latched on the rising edge of either WE or CE, whichever occurs first. Data output on the l/O line is active whenever both OE and CE are LOW. Care should be taken to ensure that WE and OE are never both LOW while CE is LOW. Read Sequence A read sequence consists of sending a 16-bit address followed by the reading of data serially. The address is written by issuing 16 separate write cycles (WE and CE LOW, OE HIGH) to the part without a read cycle between the write cycles. The address is sent serially, most significant bit first, over the I/O line. Note that this sequence is fully static, with no special timing restrictions, and the processor is free to perform other tasks on the bus whenever the device CE pin is HIGH. Once the 16 address bits are sent, a byte of data can be read on the I/O line by issuing 8 separate read cycles (OE and CE LOW, WE HIGH). At this point, writing a `1' will terminate the read sequence and enter the low power standby state, otherwise the device will await further reads in the sequential read mode. Sequential Read The byte address is automatically incremented to the next higher address after each byte of data is read. The data stored in the memory at the next address can be read sequentially by continuing to issue read cycles. When the highest address in the array is reached, the address counter rolls over to address $0000 and reading may be continued indefinitely.
Preliminary
Reset Sequence The reset sequence resets the device and sets an internal write enable latch. A reset sequence can be sent at any time by performing a read/write "0"/read operation (see Figs. 1 and 2). This breaks the multiple read or write cycle sequences that are normally used to read from or write to the part. The reset sequence can be used at any time to interrupt or end a sequential read or page load. As soon as the write "0" cycle is complete, the part is reset (unless a nonvolatile write cycle is in progress). The second read cycle in this sequence, and any further read cycles, will read a HIGH on the l/O pin until a valid read sequence (which includes the address) is issued. The reset sequence must be issued at the beginning of both read and write sequences to be sure the device initiates these operations properly. Write Sequence A nonvolatile write sequence consists of sending a reset sequence, a 16-bit address, up to 64 bytes of data, and then a special "start nonvolatile write cycle" command sequence. The reset sequence is issued first (as described in the Reset Sequence section) to set an internal write enable latch. The address is written serially by issuing 16 separate write cycles (WE and CE LOW, OE HIGH) to the part without any read cycles between the writes. The address is sent serially, most significant bit first, on the l/O pin. Up to 64 bytes of data are written by issuing a multiple of 8 write cycles. Again, no read cycles are allowed between writes.
CE
OE
WE
I/O (IN)
"0"
A15 A14 A13 A12 A11 A10 A9 A8
A7 A6 A5 A4 A3 A2
A1 A0
I/O (OUT) RESET
WHEN ACCESSING: X84256 ARRAY: A15=0
D7 D6 D5 D4 D3 D2 D1 D0
LOAD ADDRESS
READ DATA
Figure 1. Read Sequence
3
X84256
Preliminary
CE
OE
WE
I/O (IN)
"0"
A15 A14 A13 A12 A11 A10 A9 A8
A7 A6 A5 A4 A3 A2 A1 A0
D7 D6 D5 D4 D3 D2 D1 D0
"1" "0"
I/O (OUT) RESET
WHEN ACCESSING: X84256 ARRAY: A15=0
LOAD ADDRESS
LOAD DATA
START NONVOLATILE WRITE
Figure 2. Write Sequence The nonvolatile write cycle is initiated by issuing a special read/write "1"/read sequence. The first read cycle ends the page load, then the write "1" followed by a read starts the nonvolatile write cycle. The device recognizes 64byte pages (e.g., beginning at addresses XXXXXXXXX 000000 for X84256). When sending data to the part, attempts to exceed the upper address of the page will result in the address counter "wrapping-around" to the first address on the page, where data loading can continue. For this reason, sending more than 512 consecutive data bits will result in overwriting previous data. A nonvolatile write cycle will not start if a partial or incomplete write sequence is issued. The internal write enable latch is reset when the nonvolatile write cycle is completed and after an invalid write to prevent inadvertent writes. Note that this sequence is fully static, with no special timing restrictions. The processor is free to perform other tasks on the bus whenever the chip enable pin (CE) is HIGH. Nonvolatile Write Status The status of a nonvolatile write cycle can be determined at any time by simply reading the state of the l/O pin on the device. This pin is read when OE and CE are LOW and WE is HIGH. During a nonvolatile write cycle the l/O pin is LOW. When the nonvolatile write cycle is complete, the l/O pin goes HIGH. A reset sequence can also be issued during a nonvolatile write cycle with the same
4
result: I/O is LOW as long as a nonvolatile write cycle is in progress, and l/O is HIGH when the nonvolatile write cycle is done. Low Power Operation The device enters an idle state, which draws minimal current when: * an illegal sequence is entered. The following are the more common illegal sequences: --Read/Write/Write--any time --Read/Write `1'--When writing the address or writing data. SYMBOL TABLE
WAVEFORM INPUTS Must be steady May change from LOW to HIGH May change from HIGH to LOW Don't Care: Changes Allowed N/A OUTPUTS Will be steady Will change from LOW to HIGH Will change from HIGH to LOW Changing: State Not Known Center Line is High Impedance
X84256
--Write `1'--when reading data --Read/Read/Write `1'--after data is written to device, but before entering the NV write sequence. --the device powers-up; --a nonvolatile write operation completes. While a sequential read is in progress, the device remains in an active state. This state draws more current than the idle state, but not as much as during a read itself. To go back to the lowest power condition, an invalid condition is created by writing a `1' after the last bit of a read operation. Write Protection The following circuitry has been included to prevent inadvertent nonvolatile writes: --A special "start nonvolatile write" command sequence is required to start a nonvolatile write cycle. ABSOLUTE MAXIMUM RATINGS* Temperature under Bias ...................... -65C to +135C Storage Temperature ........................... -65C to +150C Terminal Voltage with Respect to VSS .......................................-1V to +7V DC Output Current................................................... 5mA Lead Temperature (Soldering, 10 seconds)..........300C
Preliminary
RECOMMENDED OPERATING CONDITIONS Temperature Commercial Industrial Military Min. 0C -40C -55C Max. +70C +85C +125C
*COMMENT Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and the functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Supply Voltage X84256 X84256 - 2.5 X84256 - 1.8 Limits 5V 10% 2.5V to 5.5V 1.8V to 3.6V
D.C. OPERATING CHARACTERISTICS (VCC = 5V 10%) (Over the recommended operating conditions, unless otherwise specified.) Limits Symbol ICC1
ICC2 ISB1 ILI ILO VlL (1) VIH (1) VOL VOH
Parameter VCC Supply Current (Read)
VCC Supply Current (Write) VCC Standby Current Input Leakage Current Output Leakage Current Input LOW Voltage Input HIGH Voltage Output LOW Voltage Output HIGH Voltage
Min.
Max. 1
3 1 10 10
Units mA
mA A A A V V V V
Test Conditions OE = VIL, WE = VIH, I/O = Open, CE clocking @ 10MHz
ICC During Nonvolatile Write Cycle All Inputs at CMOS Levels CE = VCC, Other Inputs = VCC or VSS VIN = VSS to VCC VOUT = VSS to VCC
-0.5 VCC x 0.7
VCC x 0.3 VCC + 0.5 0.4
IOL = 2.1mA IOH = -1mA
VCC - 0.8
Notes: (1) VIL Min. and VIH Max. are for reference only and are not tested.
5
X84256
D.C. OPERATING CHARACTERISTICS (VCC = 2.5V to 5.5V) (Over the recommended operating conditions, unless otherwise specified.) Symbol ICC1 ICC2 ISB1 ILI ILO VlL(1) VIH(1) VOL VOH Parameter VCC Supply Current (Read) VCC Supply Current (Write) VCC Standby Current Input Leakage Current Output Leakage Current Input LOW Voltage Input HIGH Voltage Output LOW Voltage Output HIGH Voltage VCC - 0.4 -0.5 VCC x 0.7 Limits Min. Max. 1 3 1 10 10 VCC x 0.3 VCC + 0.5 0.4 Units mA mA A A A V V V V
Preliminary
Test Conditions OE = VIL, WE = VIH, I/O = Open, CE clocking @ 5MHz ICC During Nonvolatile Write Cycle All Inputs at CMOS Levels CE = VCC, Other Inputs = VCC or VSS VIN = VSS to VCC VOUT = VSS to VCC
IOL = 1mA, VCC = 3V IOH = -400A, VCC = 3V
D.C. OPERATING CHARACTERISTICS (VCC = 1.8V to 3.6V) (Over the recommended operating conditions, unless otherwise specified.) Symbol ICC1 ICC2 ISB1 ILI ILO VlL(1) VIH(1) VOL VOH Parameter VCC Supply Current (Read) VCC Supply Current (Write) VCC Standby Current Input Leakage Current Output Leakage Current Input LOW Voltage Input HIGH Voltage Output LOW Voltage Output HIGH Voltage VCC - 0.2 -0.5 VCC x 0.7 Limits Min. Max. 500 2 1 10 10 VCC x 0.3 VCC + 0.5 0.4 Units A mA A A A V V V V IOL = 0.5mA, VCC = 2V IOH = -250A, VCC = 2V Test Conditions OE = VIL, WE = VIH, I/O = Open, CE clocking @ 3MHz ICC During Nonvolatile Write Cycle All Inputs at CMOS Levels CE = VCC, Other Inputs = VCC or VSS VIN = VSS to VCC VOUT = VSS to VCC
Notes: (1) VIL Min. and VIH Max. are for reference only and are not tested.
6
X84256
CAPACITANCE Symbol CI/O
(2)
Preliminary
TA = +25C, f = 1MHz, VCC = 5V Parameter Input/Output Capacitance Input Capacitance Max. 8 6 Units pF pF Test Conditions VI/O = 0V VIN = 0V
CIN(2)
Notes: (2) Periodically sampled, but not 100% tested.
POWER-UP TIMING Symbol tPUR
(3)
Parameter Power-up to Read Operation Power-up to Write Operation
Max. 2 5
Units ms ms
tPUW(3)
Notes: (3) Time delays required from the time the VCC is stable until the specific operation can be initiated. Periodically sampled, but not 100% tested.
A.C. CONDITIONS OF TEST Input Pulse Levels Input Rise and Fall Times Input and Output Timing Levels VCC x 0.1 to VCC x 0.9 5ns VCC x 0.5
EQUIVALENT A.C. LOAD CIRCUITS
5V 2.06K OUTPUT 3.03K 30pF 2.39K OUTPUT 4.58K 30pF 3V 2.8K OUTPUT 5.6K 30pF 2V
7008 FRM F06
7008 FRM F07
7
X84256
A.C. CHARACTERISTICS (Over the recommended operating conditions, unless otherwise specified.) Read Cycle Limits - X84256 VCC = 5V10% Symbol
tRC tCE tOE tOEL tOEH tLOW tHIGH tLZ(4) tHZ(4) tOLZ(4) tOHZ(4) tOH tWES tWEH
Preliminary
VCC = 2.5V - 5.5V VCC = 1.8V - 3.6V Min.
200
Parameter
Read Cycle Time CE Access Time OE Access Time OE Pulse Width OE High Recovery Time CE LOW Time CE HIGH Time CE LOW to Output In Low Z CE HIGH to Output In High Z OE LOW to Output In Low Z OE HIGH to Output In High Z Output Hold from CE or OE HIGH WE HIGH Setup Time WE HIGH Hold Time
Min.
100
Max
Max.
Min.
330
Max.
Units
ns
25 25 50 50 50 50 0 0 0 0 0 25 25 25 25 60 60 70 120 0 0 0 0 0 25 25
50 50 90 90 90 180 0 30 0 0 30 0 0 25 25
70 70
ns ns ns ns ns ns ns
35
ns ns
35
ns ns ns ns
Notes: (4) Periodically sampled, but not 100% tested. tHZ and tOHZ are measured from the point where CE or OE goes HIGH (whichever occurs first) to the time when I/O is no longer being driven into a 5pF load.
tRC tLOW tCE tHIGH
CE
WE
tWES tOE
t OEL
t OEH
OE
tWEH t OHZ
I/O
t OLZ t LZ
DATA
tOH t HZ
HIGH Z
8
X84256
Write Cycle Limits - X84256 Symbol tNVWC(5) tWC
tWP tWPH tCS tCH tCP tCPH tOES tOEH tDS(6) tDH(6) tWPSU
(7)
Preliminary
Parameter Nonvolatile Write Cycle Time Write Cycle Time
WE Pulse Width WE HIGH Recovery Time Write Setup Time Write Hold Time CE Pulse Width CE HIGH Recovery Time OE HIGH Setup Time OE HIGH Hold Time Data Setup Time Data Hold Time WP HIGH Setup WP HIGH Hold
VCC = 5V 10% Min. Max. 5 100
25 65 0 0 25 65 25 25 12 5 100 100
VCC = 2.5V - 5.5V VCC = 1.8V - 3.6V Min. Max. 5 200
40 150 0 0 40 150 25 25 20 5 100 100
Min.
Max. 5
Units ms ns
ns ns ns ns ns ns ns ns ns ns ns ns
330
70 200 0 0 70 200 50 50 30 5 150 150
tWPHD(7)
Notes: (5) tNVWC is the time from the falling edge of OE or CE (whichever occurs last) of the second read cycle in the "start nonvolatile write cycle" sequence until the self-timed, internal nonvolatile write cycle is completed. (6) Data is latched into the X84256 on the rising edge of CE or WE, whichever occurs first. (7) Periodically sampled, but not 100% tested.
9
X84256
CE Controlled Write Cycle
tCPH tCP
Preliminary
CE
tOES tOEH
OE
tCS tCH tWP tWPH
WE
WP
tWPSU tDS
tWPHD tDH
I/O
DATA
tWC
HIGH Z
WE Controlled Write Cycle
tCPH tCP
CE
tOES
OE
t CS
tCH tOEH tWP tWPH t WPHD
WE
WP
tWPSU tDS t DH
I/O
DATA
tWC
HIGH Z
10
X84256
PACKAGING INFORMATION 8-LEAD XBGA
Preliminary
X84256: Bottom View
D1
I/O B
VCC
CE C
NC
VSS
WE
WP
OE
e
D
D A
E
A1
NOTE: ALL DIMENSIONS IN M
ALL DIMENSIONS ARE TYPICAL VALUES
11
E
A1
X84256
PACKAGING INFORMATION 8-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S
Preliminary
0.150 (3.80) 0.158 (4.00) PIN 1 INDEX
0.228 (5.80) 0.244 (6.20)
PIN 1
0.014 (0.35) 0.019 (0.49)
0.188 (4.78) 0.197 (5.00)
(4X) 7
0.053 (1.35) 0.069 (1.75)
0.050 (1.27)
0.004 (0.19) 0.010 (0.25)
0.010 (0.25) 0.020 (0.50) X 45
0.050" TYPICAL
0 - 8 0.0075 (0.19) 0.010 (0.25) 0.016 (0.410) 0.037 (0.937) 0.250"
0.050" TYPICAL
FOOTPRINT
0.030" TYPICAL 8 PLACES
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)
12
X84256
Preliminary
16-LEAD PLASTIC SMALL OUTLINE GULL WING P ACKAGE TYPE S
0.150 (3.80) 0.158 (4.00) PIN 1 INDEX
0.228 (5.80) 0.244 (6.20)
PIN 1
0.014 (0.35) 0.020 (0.51) 0.386 (9.80) 0.394 (10.01)
(4X) 7
0.053 (1.35) 0.069 (1.75)
0.050 (1.27)
0.004 (0.19) 0.010 (0.25)
0.010 (0.25) 0.020 (0.50) X 45
0.050" Typical
0 - 8 0.0075 (0.19) 0.010 (0.25) 0.016 (0.410) 0.037 (0.937) 0.250" 0.050" Typical
FOOTPRINT
0.030" Typical 16 Places
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)
13
X84256
PACKAGING INFORMATION
Preliminary
14-LEAD PLASTIC, TSSOP, PACKAGE TYPE V
.025 (.65) BSC
.169 (4.3) .252 (6.4) BSC .177 (4.5)
.193 (4.9) .200 (5.1)
.047 (1.20)
.0075 (.19) .0118 (.30)
.002 (.05) .006 (.15)
.010 (.25) Gage Plane 0 - 8 .019 (.50) .029 (.75) Detail A (20X) Seating Plane
.031 (.80) .041 (1.05)
See Detail "A"
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)
14
X84256
ORDERING INFORMATION X84256 Device X X -X
Preliminary
VCC Range Blank = 4.5V to 5.5V, 10 MHz 2.5 = 2.5V to 5.5V, 5 MHz 1.8 = 1.8V to 3.6V, 3MHz (contact factory) Temperature Range Blank = Commercial = 0C to +70C I = Industrial = -40C to +85C Military = -55C to +125C (contact factory) Packages: X84256 S8 = 8-Lead SOIC S16 = 16-Lead SOIC V14 = 14-Lead TSSOP Z = 8-Lead XBGA
*PART MARK CONVENTION 14-Lead TSSOP YWW 84256 F = 2.5 to 5.5V, 0 to +70C G = 2.5 to 5.5V, -40 to +85C Blank = 4.5 to 5.5V, 0 to +70C I = 4.5 to 5.5V, -40 to +85C 8-Lead SOIC X84256 X XX Blank = 8-Lead SOIC 8-Lead XBGA Complete Part Number X84256Z-2.5 X84256ZI-2.5 Top Mark XABA XABB
F = 2.5 to 5.5V, 0 to +70C G = 2.5 to 5.5V, -40 to +85C Blank = 4.5 to 5.5V, 0 to +70C I = 4.5 to 5.5V, -40 to +85C
LIMITED WARRANTY Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices at any time and without notice. Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, licenses are implied. U.S. PATENTS Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967; 4,883, 976. Foreign patents and additional patents pending. LIFE RELATED POLICY In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection and correction, redundancy and back-up features to prevent such an occurence. Xicor's products are not authorized for use in critical components in life support devices or systems. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
15


▲Up To Search▲   

 
Price & Availability of X84256

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X